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It is a great honor for me to be published in 
Geombinatorics and to present an historical and 
philosophical view of important new results by 
Saharon Shelah and Alexander Soifer.        

– Jean-Paul Delahaye 
 
The axiom of choice, a benign matter for the non-logician, 

puzzles mathematicians. Today, it manifests itself in a strange 
way: it takes, depending on the axiom’s variants, either two or 
infinity of colors to resolve a coloring problem. 

Just as the parallels postulate seemed obvious, the axiom of 
choice has often been considered true and beyond discussion. The 
inventor of set theory, Georg Cantor (1845-1918), had used it 
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several times without realizing it; Giuseppe Peano (1858-1932) 
used it in 1890, in working to solve a differential equation 
problem, consciously; but it was Ernst Zermelo (1871-1953), at the 
beginning of the 20th century, who identified it clearly and studied 
it. 
 This axiom states that given a set of disjoint non-empty 
sets, for example the set E containing the three sets {1,2}, {a, b, c}, 
{x, y}, then a set C exists that is composed of one element from 
each set in E, for example C = {2, a, y}. Back Note 1 demonstrates 
two different forms of the axiom of choice and the reasons that 
make this axiom delicate. 
 The axiom of choice is independent of other axioms of set 
theory in the same way that the parallels postulate is independent 
of other axioms in geometry. Given the acceptance of these other 
axioms, you can still, without risk of contradiction, either accept 
the axiom of choice or accept its negation. 
 These results of so-called “relative consistency” were 
proven in 1939 by Kurt Gödel (it is possible to add the axiom of 
choice without causing contradiction) and by Paul Cohen in 1963 
(it is also possible to add the negation of the axiom of choice 
without introducing contradiction). These results mean, as with the 
parallels postulate, that several different universes can be 
considered. 
 In the case of geometry, the independence of the parallels 
postulate proved that non-Euclidian geometries deserved to be 
studied and that they could even be used in physics: Albert 
Einstein took advantage of these when, between 1907 and 1915, he 
worked out his general theory of relativity. 
 Regarding the axiom of choice, a similar logical conclusion 
was warranted; the universes where the axiom of choice is not 
satisfied must be explored and could be useful in physics. 
 
Toward a set-ist revolution? 
 

However, the attitude of mathematicians toward the axiom 
of choice is different from their current attitude in the field of 
geometry. In set theory, the dominant point of view consists of 



maintaining that the axiom of choice is true, neglecting almost 
completely competing axioms, yet some of these are very 
interesting. Everything is as though the equivalent of the revolution 
of non-Euclidian geometries has not yet occurred in set theory, 
which today is the general foundation on which all mathematics is 
constructed. 
 The implicit argument justifying this lack of interest is that 
the axiom of choice is only rarely important when dealing with 
simple questions and that when one deals with more subtle 
questions – like those of analysis – it is preferable to adopt it, 
because it is truly necessary to establish the fundamental theorems 
which we cannot do without. 
 A series of results concerning the theory of graphs, 
published in 2003 and 2004 by Alexander Soifer of Princeton 
University and Saharon Shelah, of the University of Jerusalem, 
should temper our attitude and invite us to greater curiosity for the 
alternatives offered by the axiom of choice. The observation 
demonstrated by A. Soifer and S. Shelah should force 
mathematicians to reflect on the problems of foundations: what 
axioms must be retained to form the basis of mathematics for 
physicists and for mathematicians? 
 For simple problems of coloring graphs, the two 
mathematicians demonstrated that the number of colors required 
depends on whether we take the axiom of choice or one of its 
weaker versions: in one case, two colors allow for the desired 
coloring scheme, in the other case, a finite number of colors, no 
matter how large, is insufficient. 
 It turns out that knowing if the world of sets satisfies the 
axiom of choice or a competing axiom is a determining factor in 
the solution of problems that no one had imagined depended on 
them. The questions raised by the new results are tied to the 
fundamental nature of the world of sets. Is it reasonable to believe 
that the mathematical world of sets is real? If it exists, does the true 
world of sets – the one in which we think we live – allow the 
coloring of S. Shelah and A. Soifer in two colors or does it require 
an infinity of colors? 



 To grasp the strangeness of the situation created by A. 
Soifer and S. Shelah’s results, let us examine the coloring 
problems that interest mathematicians. 
 
Coloring a graph 
 
Coloring exercises are among the mathematical problems that even 
young children face. How can you color a geometric drawing to 
avoid that two neighboring areas blend together? How do you 
choose different colors for two contiguous regions? The 4-color 
theorem provides the answer: no matter how complicated the 
regions to be colored are – similar to countries drawn on a map – 
coloring with 4 colors is always possible. Note that this theorem, 
the proofs of which all use computers, ceases to be true when the 
map is drawn on a “torus” - the surface of a car tire’s inner tube – 
where some maps require 5, 6, or even 7 colors. 
 For every map-coloring problem (on a plane, a toric 
surface, or other) there is a graph obtained by creating a node per 
country and by linking with an arc any two nodes corresponding 
the neighboring countries. We study only the coloring of graphs 
for it is more general: given a graph, we must find a color for each 
node so that two nodes linked by an arc are of different colors. 
 Some graphs require two colors, others three, etc. Given a 
graph, finding the coloring scheme with the most economical 
number of colors is a difficult problem with a very long calculation 
time (like the problem of determining divisors for a composite 
number). 
 If you can color a finite graph with K colors, while you 
cannot with K–1 colors (still requiring that nodes that are linked to 
carry different colors), the graph has chromatic number K. Back 
Note 2 shows graphs with chromatic numbers of 2, 3, 4, etc. 
Finding the chromatic number for a finite graph is only a matter of 
(long) patience, as it simply requires trying all possible coloring 
schemes. 
 If a problem is finite (i.e., if the number n of graph’s nodes 
is finite) and if it can be solved using the axiom of choice, then it 
can also be solved without using it: it is therefore impossible to 



find a finite graph whose chromatic number depends on the axiom 
of choice. The axiom of choice is unavoidable only when infinity 
appears somewhere in the problem. We did not imagine that the 
solution to chromatic number problems, which are closer to 
arithmetic than analysis, could be different depending on whether 
the axiom of choice was accepted or not. That is the recent 
discovery by S. Shelah and A. Soifer. 
 The simplest graph, A. Soifer and S. Shelah’s graph G1, 
that poses a problem, is the graph defined as follows: the nodes in 
G1 are the real numbers (points on a straight line) and the arcs are 
the pairs (x, y) such that that (x - y - √2) is a rational number, in 
other words, the quotient of two whole numbers. 
 We cannot draw the graph G1 by A. Soifer and S. Shelah 
completely (since it is infinite), but visualizing it does not require 
too much effort. For example there is no arc between x = 3 and y = 
1, nor between x = √2 and y = √3, because it’s clear in each case 
that x - y - √2 is not rational. On the other hand, there are arcs 
linking  x = √2 and y = 4/5, or linking x = π + √2 and π + 3/37, etc. 
While the graph G1 is infinite, it is not complicated, because for a 
given x and y, we can easily answer the question: “Are they linked 
in G1?” Although G1 is infinite, it does not seem unreasonable to 
consider that its coloring is a simple problem, quite far from the 
subtleties of the analysis of differential equations or of theorems of 
topology of infinite dimensions. 
 
Two colors or an infinite number? 
 
A. Soifer and S. Shelah prove through a demonstration – using the 
axiom of choice in a general form, denoted AC – (see Back Note 
3) that G1 can be colored using two colors: if AC is true, then the 
chromatic number for G1 is 2. On the other hand, they show that G1 
has an infinite chromatic number when you replace the axiom of 
choice by the combination of the two classic axioms DC + LM  
considered as convenient as AC for developing the analysis. 

The situation is extremely troubling since the two systems 
under consideration ZF + AC (Zermelo-Fraenkel set theory with 
the axiom of choice) and ZF + DC + LM (system proposed by 



Solovay in 1964 that allows the appropriate development of the 
greater part of mathematics needed in physics) seem equally 
worthy for everything related to the concrete world. 

The assertion that two numbers x and y have a difference of 
the form of √2 + p/q depends in no way on an arbitrary decision on 
the part of the mathematician, just as the assertion that 22 091 is a 
prime number does not result from an act that one can do or refuse 
to do. Consequently, the minimum number of colors necessary to 
color the nodes of graph G1, without two linked nodes having the 
same color, seems to be determined in advance without any 
freedom being given to the mathematician. 

 Other graphs G2 and Gn constructed by S. Shelah 
and A. Soifer according to similar principles and this time linking 
the points of the plane or space in n dimensions confirm this 
puzzling link between axiom of choice and chromatic number. 
Before these results, it was believed that problems of colorability 
were simple, clear, and concrete problems, whose solution could 
not depend on which particular form of the axiom of choice was 
selected. This is not true! 

Note that this is not about taking the axiom of choice or 
refusing it completely, but rather using it either in its strong form 
AC, or in a weaker form, DC, accompanied by a convenient axiom, 
LM, all together DC + LM, forming a system that appears as 
reasonable as the one obtained with AC. Eliminating AC abruptly 
without replacing it with another axiom is not seriously 
conceivable, since in order to develop the analysis and construct 
the mathematics necessary for physics (theory of differential 
systems, partial differential equations, Banach spaces, etc.), you 
need at least weak forms of the axiom of choice.  When choosing 
the option DC + LM in place of AC, we find ourselves in a world 
that could be qualified physically as reasonable as the one obtained 
with AC. 

The results by S. Shelah and A. Soifer hit the sensitive 
heart of applied mathematics: while considering only two 
reasonable theories (for those who do not want to lose the 
foundation on which contemporary physical sciences are based), 



they show that the answer to a basic question depends on the 
theory chosen. 
 
Is there a truth and where is it? 
 
If we believe that the assertion “the graph G1 by A. Soifer and S. 
Shelah requires 2 colors” is either true or false, then it means that 
one of the two theories ZF + AC or ZF + DC + LM is true and the 
other one is false. It would be good to know which one. 
Unfortunately, it is unclear on what criteria to base such a decision, 
and the large majority of mathematicians today are convinced that 
it is useless to try to find out which of the two theories is “true.” 
 A similar situation was already encountered concerning the 
Continuum Hypothesis CH, the assertion that there is no infinity of 
a size between the set of whole numbers N and the set of real 
numbers R. Although very specific, the question posed by CH – 
which like AC is an axiom that is independent of the other axioms 
of set theory – does not appear to have a solution. In spite of some 
recent progress due to Hugh Woodin pointing to the falsity of CH, 
today most mathematicians believe that neither option offered (to 
adopt or refute CH) is better or truer than the other is. 
 The great logician Kurt Gödel (1906-1978) defended the 
idea that we had not yet identified all the axioms of set theory and 
that when we have done so, we will no longer be able to choose 
between AC and DC + LM (or between CH and its negation), 
because one of the options will be excluded by the additional 
axioms. However, no axiom has imposed itself so far that 
discredits either of the two options ZF + AC or ZF + DC + LM 
considered by A. Soifer and S. Shelah. Today, the notion of 
missing axioms does not receive much support anymore. 
 Rather than supporting the position that the graph G1 can or 
cannot be colored with two colors and that we will finally know 
when we have completed the set theory, another option can be 
offered. This option, which most are likely to adopt, consists of 
concluding from the results of A. Soifer and S. Shelah that, 
contrary to what we used to think, the chromatic number of a graph 
does not have a clear meaning in some cases, and therefore there is 



no absolute truth about the chromatic number for G1, for example. 
The colorability of the graph G1 is not a real problem with a finite 
solution that we will finally discover and with which everyone will 
agree, but rather the illusion of a problem that, in the end, has no 
meaning and for which we can choose the answer freely. 
 This conclusion is fairly difficult to accept, and the 
strangeness of the world of set mathematics joins a large number 
of oddities (for example the one tied to the Continuum Hypothesis, 
or the Banach-Tarski Paradox according to which a sphere can be 
broken down to form several spheres of equal volume, etc.). The 
strangest thing is perhaps that despite all the trouble encountered 
by set theory, the majority of mathematicians rely nonchalantly on 
it to establish both their theories and those destined for use in 
physics. 
 
Explanation of the difficulty of the Nelson problem 
 
The strangeness in set mathematics shown by A. Soifer and S. 
Shelah might be more important to mathematics than the 
Continuum Hypothesis, as it could explain the nature of obstacles 
encountered for over 50 years concerning the chromatic number of 
the plane. In 1950, an 18-year old young man, who has since 
become professor at Princeton University and a member of the 
Academy of Sciences of the United States, proposed a problem 
stated with great simplicity: what is the chromatic number of the 
infinite graph whose nodes are the points of a plane and whose arcs 
are all the pairs of points M, N that are one unit apart? 
 In common language, this becomes: how many different 
colors does it take to color each point on the graph in such a way 
that two points one unit apart are never of the same color? 
Elementary reasoning (see Back Note 4) shows that the chromatic 
number of the plane, CP, is at most equal to 7 (with 7 colors, we 
know how to do the required coloring task) and that it is at least 
equal to 4 (3 colors are insufficient). In other words, the chromatic 
number of the plane is 4, 5, 6, or 7. 
 Yet, for over half a century people have tried to better 
understand the value of this chromatic number but have made no 



progress. Paul Erdös relished this problem of great simplicity; he 
worked on it and widely publicized it… in vain. 
 Although the results of A. Soifer and S. Shelah do not 
apply directly to Nelson’s Problem, it is clear that the graphs 
considered by A. Soifer and S. Shelah are of the same nature. The 
idea that the impossibility of gaining any new insights into 
Nelson’s graph is due to a problem of logic is therefore being 
seriously considered today. If the chromatic number for Nelson’s 
graph really depends on the axiom of choice, as is the case for A. 
Soifer and S. Shelah’s graphs, a mathematician will be hard-
pressed to maintain that foundational questions, and in particular 
the problem of additional axioms in set theory, are unimportant. 
 In set theory, as in geometry, all axiomatic systems are not 
equal. Thinking carefully about their meaning and the 
consequences of each one of them, and asking ourselves (as it is 
done in geometry) what the particular usefulness of this or that 
axiom is in expressing and addressing issues of mathematical 
physics, may be relevant once again and could lead – why not – to 
a revolution of set theories, similar to the revolution in non-
Euclidian geometries. 
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BACK NOTES 
 
Back Note 1. Two forms of the axiom of choice 
 
The axiom of choice exists in several forms that are added to 
Zermelo-Fraenkel’s (ZF) axioms of set theory. 
 1) Axiom of choice in its general form (AC):   
 

 
 

Figure 1 
Given a set of disjoint sets that are non-empty, for example E = 
{{1,2}, {a, b, c}, {x, y}}, then there is a set C composed of one 
element from each set of E; C = {2, a, y} is suitable for our 
example (Figure 1). The difficulty appears only with infinite sets. 
 The axiom AC was the subject of many discussions at the 
beginning of the XXth century for, in spite of its trivial appearance, 
it results in the existence of objects impossible to construct 
explicitly: for example, it allows us to prove that there exists an 
ordering of real numbers that we know we can never construct. It 
also allows for the decomposition of a 3-dimensional sphere into 



pieces that recombine to form 2 spheres of identical size to the 
original sphere (Banach-Tarski Paradox), etc. 
 2) Axiom of dependent choices (DC): 
If T is a binary relation (for example defined by a set of arcs) so 
that for any element a of set A, there is an element b, of A, so that a 
and b are in relation, denoted aTb, then there exists an infinite 
series a(0), a(1), …, a(n) of points in A, so that each point is linked 
by an arc to the next one: a(i)Ta(i+1) (Figure 2). 
 

 
 

Figure 2 
 
 Mathematicians noticed that this axiom DC, although less 
powerful than AC (AC implies DC, but not vice-versa), was 
enough for most of the demonstrations of analysis needed in 
mathematical physics. Robert Solovay studied in 1964 the 
association of DC with the axiom LM that states that any part of R 
or of Rn is “measurable in the Lebesgue sense” (in the case of R2 
that means that any part of the plane possesses an area). 
 We know, with AC, how to prove the existence of parts of 
R (or of Rn) that are not measurable in the Lebesgue sense.  That 
means that there is incompatibility between AC and LM. Overall, 
there are thus two competing theories ZF + AC and ZF + DC + 
LM. Each one generally allows us to obtain the same analysis 
results useful in physics, however they are incompatible: in the 
first theory, certain parts of the plane have no area; in the second 
one, any part of the plane possesses an area. 
 Robert Solovay established that ZF + DC + LM was as 
reasonable a theory as ZF + AC. We find ourselves with two 



competing and incompatible theories, both allowing us to develop 
mathematics necessary for physics. Which one to choose? 
 The dilemma between ZF + AC and ZF + DC + LM looks 
like the one encountered in the XIXth century between Euclidian 
geometry, hyperbolic geometry, and elliptical geometry: neither 
one is more reasonable than the others, they are incompatible, and 
our world therefore conforms to one of them at most. How do we 
recognize which one? What is problematic in the case of ZF + AC 
and ZF + DC + LM is that A. Soifer and S. Shelah have just 
demonstrated that for questions of simple coloring of graphs, the 
two competing theories yield totally contradictory results. The 
most common attitude until now consisted of maintaining that we 
did not need to choose between ZF + AC and ZF + DC + LM: this 
attitude is no longer tenable. 
 
Back Note 2. The required number of colors 
 
Coloring a drawing or a map is equivalent to coloring a graph: with 
each country, we can associate a node of the graph and whenever 
two countries are contiguous, we draw an arc linking the 
corresponding nodes (Figure 3).  

We try to color the nodes of the graph so that no two nodes 
linked to each other have the same color The smallest number of 
colors that allows such a coloring is the graph’s chromatic number.  

 

 
 

Figure 3 



 
The problem of calculating a finite graph’s chromatic number is a 
complex algorithmic problem: there is no known algorithm that 
calculates quickly for every graph, and it is believed that none 
exists. 
 

 
 
             2 colors are needed               3 colors are needed 
 
 
 

 
 
          4 colors are needed                  5 colors are needed 
 
Back Note 3. Different chromatic numbers 
 



 The surprising result demonstrated by A. Soifer and S. 
Shelah is as follows: 
 1. If we accept the axiom of choice in its general form AC, 
then it is possible to color G1 using two colors without having two 
points linked by an arc of the same color (the chromatic number of 
G1 is 2). 
 2. Using the statement that all sets of R are measurable in 
the Lebesgue sense (axiom LM, compatible with the DC form of 
the axiom of choice) proves that the chromatic number of G1 
cannot be finite and therefore is not 2. 
 Result 1 
 With AC, it is possible to color G1 with two colors. 
 Idea of the proof 
 Let T be the relation between points of the line R (real 
numbers) defined by xTy if x – y is the sum of a rational number 
p/q and a multiple of √2 (x = y + p/q + k√2). 
 

 

Two points x and y are, by definition, in the same 
equivalence class if x – y is in the form p/q + k√2; p, q, 
k being whole numbers. If x is given, its equivalence 
class is the set of values y in the form x + p/q + k√2 ; p, 
q, k taking on all possible whole values. The class for 0 
is the set of numbers p/q + k√2 , the class for π is the set 
of numbers in the form π + p/q + k√2 , etc. 

 
 

This relation T combines points of the line R into clusters:  
T is what is called an equivalence relation and the clusters 
determined by T are the equivalence classes. Therefore, all 
numbers in the form p/q + k√2 (p, q, k being any three whole 
numbers) make up an equivalence class, since each one is linked to 
the other by the relation T. Here is an example of an equivalence 



relation: “Being a citizen of one same country. If you start from a 
French person, you will obtain all French people. If you start from 
a British person, you will obtain all British people.” We can reason 
on the equivalence class by selecting a representative (as a 
representative of the equivalence class of the French citizens, we 
can select the President of the Republic). 
 The axiom of choice AC applied to the set of equivalence 
classes of T allows us to associate a representative to each 
equivalence class. AC selects a specific element from each class 
and therefore allows us to associate to each number x, the 
representative of the class k to which x belongs, namely f(x). By 
definition, since f(x) is an element of the class, x = f(x) + p/q + k√2; 
where p, q, k are whole numbers. 
 The coloring in two colors of G1 is then defined. To 
determine the color of x, knowing the representative f(x), we can 
write x = f(x) + p/q + k√2. Therefore, if k is even, we color x in 
blue, if k is odd, we color x in red. It is a theoretical coloring, 
because in general we cannot construct the value of k, but we know 
that this whole value exists. 
 Let us show that if x and y are linked in the graph G1 of A. 
Soifer and S. Shelah, then one is red and the other is blue. 
According to the definition of G1, if x and y linked in G1, we have: 
x – y = a/b + √2. Since x and y have the same representative f(x) = 
f(y) = f* because of the previous formula, x = c/d + f* + e√2, y = 
g/h + f* + k√2 , with a, b, d, e, g, h, k whole numbers. We gather 
from this: e√2 – k√2 = √2 + i/j (i, j whole numbers) and therefore 
necessarily e – k = 1. The whole numbers e and k have different 
parities, which means that x and y are colored differently, which is 
what we wanted to establish. The coloring obtained through the 
axiom of choice AC is therefore proper and shows that the 
chromatic number of G1 is 2. 
 Result 2 
 Using DC + LM, we establish that no coloring with n 
colors is possible for G1 (the chromatic number for G1 is infinite). 
 Idea of the proof 



 Suppose we could color G1 with n colors. Let us call C1 the 
set of real numbers of color 1, C2 the set of real numbers of color 2, 
etc. 
 These sets according to the LM axiom are measurable in the 
Lebesgue sense, i.e., they can be attributed a null or a positive 
length. A reasoning that is relatively simple but that we will not 
develop here, shows that if a measurable set is of a non-null 
measure (i.e. if it has a “length”, like the segment made up of 
points between 0 and 1), then it contains at least two elements x 
and y linked in G1 . 
 Consequently, if a measurable set does not contain two 
numbers linked in graph G1 , then it is without length. The sets C1 , 
C2 , …, Cn , which by definition never contain two linked points, 
are therefore without length. Their union is therefore also without 
length, and so it is impossible for their union to yield R in its 
entirety. In other words, it is not true that C1 , C2 , …, Cn  is a 
coloring of G1 : we cannot color G1 with n colors, no matter how 
large n is. 
Back Note 4. Nelson’s Problem 
 
We have not made much progress in solving the enigma posed by 
Edward Nelson in 1950 that could be linked to the axiom of 
choice: how many different colors does it take to color each point 
of the plane so that two points one unit apart (for example one 
centimeter) are never the same color? The pointillist painting by 
Pissarro illustrates this question.  
 



 
Diagram a shows that 3 colors are not enough: the pair B and C 
and the pair E and G would have 2 different colors, point D must 
be the same color as A as well as H, and therefore points D and H, 
although one unit apart, will have the same color. Diagram b, 
where the pairs of points one unit apart are of different colors (the 
length of the side of the hexagon is 2/5), shows that 7 colors are 
enough.  
 



 
 
No one has yet specified the value of this smallest number that can 
be 4, 5, 6, or 7. 
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